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The quantum deformation of SU(1, l )  as the dynamical 
symmetry of the anharmonic osciUator 

Francisco J Narganes-Quijano 
Service de Physique ThCoriquet, Universiti. Libre de Bruxelles, CP 225, Boulevard 
du  Triompbe, B-1050 Brussels, Belgium 

Received 26 November 1990 

Abstract. As an application of *-deformed algebras to standard quantum me- 
chanics, we show that the SU(1, l )  dynamical symmetry of the quantum harmonic 
oscillator i s  deformed, in the first order of approximation, to the dynamical sym- 
metry defined by the quantized universal enveloping algebra of SU( I , I )  when the 
hamionic potential is perturbed with a potential in z4. The resolution of the an- 
harmonic oscillator is carried out algebraically in terms of generalized lowering and 
rising operators. 

1. Introduction 

Recently there has been a growing interest in the study and characterization of quan- 
tum groups and quantized universal enveloping algebras (or QUE algebras), due to 
their applications in contexts like int.egrable systems, the inverse scattering problem 
and conformal field theory (see [I-31 and references therein). To some extent, these 
applications of such QUE algebras in physics currently seem very technical, and the 
purpose of this paper is to show tha t ,  in fact, such structures may appear, playing an 
underlying role, in more familiar contexts like st,andard quantum mechanics. 

To this end, after reviewing the discrete series representations of the QUE algebra 
of SU(1, I ) ,  we show that the dynamical symmetry SU(1 , l )  of the standard quantum 
harmonic oscillator (QHO): is deformed, to the first order of approximation, to the 
dynamical symmetry described by the QUE algebra of S U ( 1 , l )  when the harmonic 
potential is subject to a suitable perturbation. In turn,  such a deformation of the 
dynamical symmetry will provide us with a natural algebraic framework in which the 
resolution of the QHO perturbed with a potential of the form V ( x )  cx x4 + I< can be 
carried out algebraically. 

2. The QUE algebra of S U ( 1 , l )  

Let us consider the SU(1, 1) version of the QUE algebra introduced indepeudently by 

t Bitnet address: ULBGOGZ a t  BBRNSFll 
t To avoid misunderstandiiig, let us stress here tbat we will consider the standard Q H O ,  and not the 
q-deformed analogue introduced by Biedenham and Macfarlane in [ I ] .  
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Woronowicz and Witten [2]: 

Here 71’ = 71, A! = A,, and q is the deformation parameter, which we take to be 
real. We have rescaled the generators for reasons that will become clear later. The 
algebra (2.1) coincides with the SU(1 , l )  invariant subalgebra of a q-deformation of the 
Virasoro algebra proposed in [5]  and [6] and considered in [7], and it can be expressed in 
terms of true commutators with respect to a non-associative graded product (see (71). 

Some comments about the QUE algebra (2.1) are in order. First, note that the 
QUE algebra of S U ( 1 , l )  is isomorphic to the QUE algebra of SU(2). Indeed, if we 
define the algebra Gq E S U q ( l ,  1) = S K q ( 2 ) ,  then 

IimG, = S U ( 1 , l )  q--1 lim Gq = SU(2).  (2.2) 
9-1 

Second, a more general deformed algehra is obtained by replacing the third relationship 
in (2.1) by 

(2.3) q-2aA A - - q 2o A - A t = - 4 7 1 .  

For a = 1, (2.3) reproduces ( Z . l ) ,  i.e. the Wittcn deformation in the strict sensc, while 
for a = -1 we obtain the Woronowicz deformation [2]. Note, however, that replacing 
the third relationship in (2.1) by (2.3) is merely a redefinition of the operators A,.  
For simplicity, we consider here the case n = 1. In the last section we shall give the 
modifications to our results for general values of the parameter a. 

Given a realization of the algebra ( Z . l ) ,  and putting q = e‘@, where p is a ‘coupling 
constant’, we can assume, for E << 1, the following decomposition of the generators 
(71, A+) t : 

A+ = A i  + CA: + 0 ( e 2 )  

71 = KO + €71‘ + U(E2). 

The zero-order operators (?lo, A $ )  generate the ‘zero-order’ algebra 

i.e. the algebra of SU(1,l). This is a consequence of the so called ‘correspondence 
principle’ for quantized algebras, which states that the quantized or q-deformed version 
Gq of an algebra Go has to contain the algebra Go in the limit q i 1 (or E + 0). Now, 
the first-order family of operators (W,  A i ]  defines the ‘first-order’ algehra associated 

t We consider here a realization of (2.1) for which this decomposition is well defined. 
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with the QUE algebra of SU(1,l)  and obtained from (2.1) by retaining only the  terms 
linear in c: 

P { ~ ~ H , , A : } + [ % ’ , A ! ] + [ % ~ , A ; ] = ~ A ;  

P{‘Ko,A!}+[A!,71’I+ [AY,%,] = 2 A L  (2.6) 

- 2@{AO_, A!}  + [A; ,  A!] + [A:,  A Y ]  = -471’. 

Note tha t  this generalized commutation algebra (2.6) is coupled to the algebra of 
SU(1, l),  (2.5). 

The discrete representations of the  algebra SU(1, l),  equations (2.5)-01 more 
precisely, of its universal covering group [Sl-are determined by a single number k ;  for 
fixed k, the orthonormal basis vectors of the representation, { l k ;  n),,], are labelled by 
an integer ii 2 0, tiiey satisfy tiie reiaiionships: 

~ o ~ k ; n ) o = 2 ( ~ + n ) ~ k ; n ) o  C , o l t ; n ) o = k ( k - l ) l k ; n ) o  

A!lk;O)o=O (2.7) 
A:lk;n),=c:Ik;n+l), A ! l k ; n ) o = ~ n - l l k ; n -  0 l)o 

CO n = ZJ(n + 1)(2k + a). 
where C,O = i’Hg - Q(A$AO_ + A! A t )  is the Casimir operator of SU(1, I), and 

(2 .8)  

On the other band, assuming the existence of a highest-weight vector Ik,; 0) and 
following the standard method, it is easily seen tha t ,  as an extension of the results 
in i5, 7, Yj, the quantized aigebra (2.1j admits discrete series representations. ‘The 
representations are determined by a quantity k , ,  and the vectors are again labelled by 
an integer n 2 0, { Ik , ;  n)]; these orthonormal vectors satisfy the properties 

%It,; 71)  = h( l l ) lk , ;  Il) 

A_!k,;O) = 0 (2.9) 

A+Ik,;n)  = c , I k , ; n + l )  A-Ik,;n) =c,-,Ik,;n- 1) 

where 

The  expressions for h(n) and c, reduce, in the limit q - 1, to their q-classical values, 
i.e. we recover the  ‘Ha eigenvalues in (2 .7)  and the expression for c: in (2.8). 

Some words about the Casimir operator are in order. There are two inequivalent 
ways of defining the Casimir operator C, in the deformed algebra. Either we take C, 
to satisfy the deformed commutators: 

(2.11) 
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or we take C, to commute with the generators {A,,’H) in the strict sense: 

[ C , , A * l = [ C 2 , W = O .  (2.12) 

In the first case there are two operators satisfying (2.11): 

while in the second case C, is given by 

(2.14) 

Note tha t  in a given representation the Schurr lemma can only be applied to C,, and 
indeed: 

(2.15) 

The  eigenvalues of Ik,; n)  with respect to the operators and G, however, are func- 
tions of both k ,  and n. 

Now invoking the correspondence principle for QUE algebras, each discrete series 
representation of SU(1, l )  is expected to be  the q + 1 limit of some discrete represen- 
tation of (2.1) of the form (2.9). Assuming k, = k + rpk’ + O(f2) ,  we get to the first 
order of approximation 

h ( n )  = ho(n) + rh’(n) + O ( 2 )  

C” = c: + fC:, + O(f2) 

where 

h,(n) = 2(k + n )  

c; = -2p(c:)-’(n+ 1 ) ( 2 n 2 + 6 k n + 4 k + n - 2 6 ‘ ) .  

V ( n )  = 2 ~ ( k ’  - n ( 2 k  + n)) 

The  states Ik,; n) can he decomposed as 

(2.16) 

(2.17) 

Ik,; n )  = Ik; n) ,  + e l k ,  k’; n)’ + c?(f2).  (2.18) 

Now taking (2.9) into account, i t  follows that the vectors {Ik;n) , , ]  verify the relation- 
ships in (2.7), and for bhe vectors { l k ,  k ‘ ; n ) ‘ )  we get: 

X J k ,  k’; n)’ + ‘H’lk; n) ,  = ho(n)lk,  k‘;  n)‘ + h’(n)lk; n),, 

A!lk ,k ’ ;O) ’+A‘_ lk ;O) ,  = 0 

A!lk ,k’ ;n) ’+  A;Ik ;n) ,  = c:Ik,k‘;n + l)‘+ cLlk;n+ l), 

A ! j k , k ’ ; n ) ’ + A Y I k ; n ) ,  = ~ : - ~ I k , k ’ ; n -  l ) ’ + ~ L - ~ l k ; n -  I),. 

(2.19) 
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In terms of the highest-weight vector Ik; 0), + c [ k , k ' ;  O) ' ,  the vectors of the repre- 
sentation, { Ik; n), + r l k ,  k'; n)'}, are completely determined by the relationships 

(2.20) 

(2.21) 

While the discrete series representations of S U ( 1 , l )  are labelled by a single quantity 
k ,  the  representations of the same algebra coupled to the algebra (2.6) are labelled 
by k and an additional quantity 6'. Moreover, since we have adopted an orthonormal 
basis for every value of q ,  we have ( k q ;  nlk,; n) = 1 = ,(k; nlk; n),; assuming that  the 
vectorial space in which the representation acts is real, it follows that  

,(k; nlk, k'; n)' = 0. (2.22) 

In the following, after a brief review of the dynamical symmetry of the QHO, we 
are going to give a realization of the commutator algebras (2.5) and (2.6). Such a 
realization will determine discrete series representations of the first-order QUE algebra 
of SU(1, I ) ,  (2.7) and (2.19), as the dynamicalsymmetry of the anharmonic oscillator. 
Hence, the energy levels of the anharmonic oscillator will be given, to the first order, 
by the eigenvalues of 'H, equation (2.17), and the corresponding eigenvectors will be 
completely determined by (2.20) and (2.21). 

3. The harmonic oscillator and its dynamical symmetry 

In natural units m = w = f i  = 1,  the one-dimensional harmonic oscillator is described 
by the Hamiltonian 31, = ata- + $, where a+ stand for the bosonic creation and 
annihilation operators satisfying the commutation relation [a- ,  at] = 1.  Explicitly 

The  orthonormal 'Ho-eigenstates +4"(z), with X,-eigenvalues (n  + i), are 

( 3 4  
- 2 1 2  

+4"(Z) = N"H"(z)e 

where Ifn = (-l)ne"2aze-"2 denotes the n t h  Hermite polynomial, and N,, = 
(fi2"n!)-'I2 is a renormalization constant. Since the states +"(z) have parity 11, 

+,,-z) = (-l)"+h(z), the vector basis decomposes into an even and odd sector. 
The  Hamiltonian 'H, and the bilinear operators A$ I 

A; = + (a2 i zZa + (.2 1)) (3.3) 
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satisfy the commutation relations (2.5),  and they generate the algebra of SU(1,l) .  It 
is straightforward to check that in fact the states Q,(r) for even and odd values of n 
transform by an irreducible representation in discrete series of SU(1, l),  with k = 4 
and k = 2 respectively, and 

(3.4) 
3. I$;& = +2,(z) lz,& = Q2n+1(z). 

Hence, these states verify (2.7) and (2.20), and SU(1, l )  constitutes the dynamical 
symmetry of the QHO. 

4. The anharmonic oscil lator 

From the considerations of the former sections, we can consider the conditions under 
which the SU(1, l )  dynamical symmetry of the QHO can be extended-or more pre- 
cisely, deformed-to the symmetry defined by the generalized commutation relations 
(2.6), together with (2.5). To achieve this, we ‘deform’ 71,, and A$ given in (3.1) and 
(3.3) to the operators 71 and A ,  given in (2.4). We choose adequate ansatze for the 
operators A;,  with (A;)t = A:, and-since we want to maintain the Hamiltonian 
character of ‘HH,-we require 71‘ to be a function of the variable z. We have found the 
following solution: 

(4.1) A; = ~ ( ~ 6 2 x 3 ~  P + (12z2 + 9)a2 + (@z3 + 24z)a  + (-4z4 32’ + 6)) 

provided 71‘ is identified with the potentialt: 

The resulting Hamiltonian is now 

(4.3) 

where P plays the role of coupling constant. 
Once we have obtained a realization of the generalized commutator algebra (2.5) 

and (2.6), let us consider the space of states of the representation for such an operator 
algebra. Since the first-order operators A; and 71’ preserve the parity of the zero-order 
representations, let us consider both sectors separately. 

From (2.19) we get the two following conditions for the 
highest-weight state of the representation (the ground state of 71): 

Even sector, k = i .  

A![O)’ + ALIO), = 0 71,10)‘ + X‘lO), = 2/40)’ + 2pk’10),,. (4.4) 

t In  fact, the general solution for X’ also contains a term of the form gz-’ that defines the singular 
oscillator; in this case. much of the results presented here can be extended to the o d d  sector of the 
QHO, following the considerations of [8]. 
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Replacing IO), by the wavefunction 40(z), and the operators by their explicit expres- 
sions, (4.4) fixes k‘ = and determines the explicit form for the highest-weight state 
IO) = IO), + € I O ) ’ +  U(?):  

lo), = &(z) lo)’ = (z4 + 3z2 - - &,(z). (4.5) 4 !’> 
The energy of this s ta te  is h(0)  = 2(k + c,b’k‘) + O(r2)  = 
(4.4), we have imposed the supplementary condition ,(OlO)‘ = 0. 

from (2.17): 

+ @/4 + U ( c * ) .  In solving 

+ tin)’, E, = h ( n ) ,  can be read directly Now, the energy of the states In) = 

E, = - + 2n - r-(8nz +4n  - 1) + U ( c 2 )  (4.6) (; ) : 
and (2.20) and (2.21) determine the explicit form of these states 

x &(z) + ( A y 6  (z4 + 322 - - 4 &(x) ”> 1 
Making use of the properties of the Hermite polynomials [lo], we have obtained tlie 
following simple general expression 

where 

As a check, i t  is straightforward to see tha t  In)’ verifies the first of the relationships 
in (2.19). The  fact that  in solving (4.4) we have imposed the condit,ion ,(OlO)‘ = 0 
guarantees tha t  the relationships (2.22) are satisfied for every 11, i.e. by construction 
,(nIn)’ = 0. 

Odd sector, k = i. In this sector IO), = 4](z). Proceeding in the same way, (4.4) 
fixes k‘ = -:, and yield for the highest-weight s ta te  of the representation 

I O ) =  ( l + C {  ( 2 4 + 5 2 2 - -  “”>> 4 41(z)+u(c2) (4.10) 
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with energy h(0 )  = 2(k + @k')  = 3/2 - ~ 3 @ / 4  + O(t2). For the states In) we get the 
expression 

with energies E, = h(n) 

E, = - + 2n - r-(8n2 + 12n + 3) + qc2) (i ) f 

(4.11) 

(4.12) 

It  is straightforward to check t h a t  these results coincide with the ones we would 
expect by applying the standard perturbation method t o  the perturbed Hamiltonian. 
In particular, the first-order corrections to the energy levels of the QHO due to a 
potential of the form V ( z )  = -@/3(z4 - :) are given by 

(4,,lV(z)l&,) = -@/12(4,l(a- + a+)4 - 614,) = -@/4(2m2 + 2m - 1). (4.13) 

Now putting m = 2n and m = 2n + 1 we recover (4.6) and (4.12), respectively. I t  can 
be also seen tha t  the expressions (4.8) and (4.11) reproduce the corresponding ones 
obtained by standard perturbation techniques: 

(4.14) 

5. Conclusions and comments 

As an  illustration of the fact that  the representation theory of QUE algebras is in 
correspondence to tha t  of their 'q-classical' (q i 1 limit) algebras, we have shown 
explicitly tha t  the dynamical symmetry of the one-dimensional QHO is the q-classical 
limit of the (first-order) QUE SU(1, 1) dynamical symmetry of the anharmonic oscil- 
lator. Roughly speaking, the first-order q-deformation of SU(1 , l )  to its QUE version 
entails the deformation of the Hilbert space of the QHO to that of the anharmonic 
oscillator. 

By exploiting this underlying symmetry of the anharmonic oscillator, we have 
endowed the perturbative calculation of the energies and-especially-of the wave- 
functions of the anharmonic oscillator with an  elegant and simple algebraic structure. 
In particular, under such a perturbation in the harmonic potential, the even (odd) 
sector of the QHO, that  provides a representation of SU(1 , l )  with k = 1 4 ( k  = 3)  4 '  

displays a representation of the first-order QUE algebra of SU(1 , l )  corresponding to 
the values k = $, k' = 

The  results presented here in detail can be extended to more general circumstances. 
Under the transformationA* -+ q(I-')A*, for instance, the third relationship in (2 .1 )  
becomes (2.3). In such a case we have A i  - A$ and A; - @(I - a)A$ + A ; ,  while 
the potential becomes 

3 ( k  = i, k' = -g). 
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Henceforth, the method also applies to a general perturbation of the form ( x 4  + It') 
for an arbitrary constant It'. 

The procedure presented here can also be further extended to higher orders. TO 
second order, for instance, the harmonic Hamiltonian is deformed to the following one 

and it can be 'solved' to second order following the algebraic method considered here. 
We may expect that some particular realization of the QUE algebra of sU(1 ,  1) 

should constitute the ezacl dynamical symmetry of an ordinary quantum system de- 
scribed by a Hamiltonian of the formX = - ia2+Vq(x) ,  for asuitable one-dimensional 
potential Vq(x).  The corresponding energy levels would be given by h(n) in (2.10). 
XI-&- &L..& L(-\ --2" ..-a +L..--L-- ""_-- & 1.- l..._lln_ &L-.. --- I- ..GL -_... :-,. &ha 
,.I"LIc: L/,,a* U,,&, & y "r DIIIaLLIC, Y l l a , ,  ",IC, aa " l l l r L w 1 O C  Y l l r  

energy spectrum would be increasing exponentiallyi. Therefore, for Vq(z)  to be a real- 
istic physical potential, the deformation parameter has to be subject to the condition 
q 2 1. The asymptotic behaviour in the domain 0 5 ( q  - 1) << 1 of such a deformed 
potential would be 

a*." (III~:IS,",c: q L n l l l l Y Y  

It would be interesting to get the specific form of such a class of one-dimensional 
potentials (if any) and to investigate their possible physical relevance. These questions 
remain to be investigated. 
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